A Review on Recent Computational Methods for Predicting Noncoding RNAs
نویسندگان
چکیده
Noncoding RNAs (ncRNAs) play important roles in various cellular activities and diseases. In this paper, we presented a comprehensive review on computational methods for ncRNA prediction, which are generally grouped into four categories: (1) homology-based methods, that is, comparative methods involving evolutionarily conserved RNA sequences and structures, (2) de novo methods using RNA sequence and structure features, (3) transcriptional sequencing and assembling based methods, that is, methods designed for single and pair-ended reads generated from next-generation RNA sequencing, and (4) RNA family specific methods, for example, methods specific for microRNAs and long noncoding RNAs. In the end, we summarized the advantages and limitations of these methods and pointed out a few possible future directions for ncRNA prediction. In conclusion, many computational methods have been demonstrated to be effective in predicting ncRNAs for further experimental validation. They are critical in reducing the huge number of potential ncRNAs and pointing the community to high confidence candidates. In the future, high efficient mapping technology and more intrinsic sequence features (e.g., motif and k-mer frequencies) and structure features (e.g., minimum free energy, conserved stem-loop, or graph structures) are suggested to be combined with the next- and third-generation sequencing platforms to improve ncRNA prediction.
منابع مشابه
Computational analysis of noncoding RNAs.
Noncoding RNAs have emerged as important key players in the cell. Understanding their surprisingly diverse range of functions is challenging for experimental and computational biology. Here, we review computational methods to analyze noncoding RNAs. The topics covered include basic and advanced techniques to predict RNA structures, annotation of noncoding RNAs in genomic data, mining RNA-seq da...
متن کاملMethods for distinguishing between protein-coding and long noncoding RNAs and the elusive biological purpose of translation of long noncoding RNAs.
Long noncoding RNAs (lncRNAs) are a diverse class of RNAs with increasingly appreciated functions in vertebrates, yet much of their biology remains poorly understood. In particular, it is unclear to what extent the current catalog of over 10,000 annotated lncRNAs is indeed devoid of genes coding for proteins. Here we review the available computational and experimental schemes for distinguishing...
متن کاملMolecular Mechanisms and Function Prediction of Long Noncoding RNA
The central dogma of gene expression considers RNA as the carrier of genetic information from DNA to protein. However, it has become more and more clear that RNA plays more important roles than simply being the information carrier. Recently, whole genome transcriptomic analyses have identified large numbers of dynamically expressed long noncoding RNAs (lncRNAs), many of which are involved in a ...
متن کاملStructure Prediction: New Insights into Decrypting Long Noncoding RNAs
Long noncoding RNAs (lncRNAs), which form a diverse class of RNAs, remain the least understood type of noncoding RNAs in terms of their nature and identification. Emerging evidence has revealed that a small number of newly discovered lncRNAs perform important and complex biological functions such as dosage compensation, chromatin regulation, genomic imprinting, and nuclear organization. However...
متن کاملIncredible RNA: Dual Functions of Coding and Noncoding
Since the RNA world hypothesis was proposed, a large number of regulatory noncoding RNAs (ncRNAs) have been identified in many species, ranging from microorganisms to mammals. During the characterization of these newly discovered RNAs, RNAs having both coding and noncoding functions were discovered, and these were considered bifunctional RNAs. The recent use of computational and high-throughput...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017